1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
#[doc = r" Value read from the register"]
pub struct R {
    bits: u32,
}
#[doc = r" Value to write to the register"]
pub struct W {
    bits: u32,
}
impl super::DLY {
    #[doc = r" Modifies the contents of the register"]
    #[inline]
    pub fn modify<F>(&self, f: F)
    where
        for<'w> F: FnOnce(&R, &'w mut W) -> &'w mut W,
    {
        let bits = self.register.get();
        let r = R { bits: bits };
        let mut w = W { bits: bits };
        f(&r, &mut w);
        self.register.set(w.bits);
    }
    #[doc = r" Reads the contents of the register"]
    #[inline]
    pub fn read(&self) -> R {
        R {
            bits: self.register.get(),
        }
    }
    #[doc = r" Writes to the register"]
    #[inline]
    pub fn write<F>(&self, f: F)
    where
        F: FnOnce(&mut W) -> &mut W,
    {
        let mut w = W::reset_value();
        f(&mut w);
        self.register.set(w.bits);
    }
    #[doc = r" Writes the reset value to the register"]
    #[inline]
    pub fn reset(&self) {
        self.write(|w| w)
    }
}
#[doc = r" Value of the field"]
pub struct PRE_DELAYR {
    bits: u8,
}
impl PRE_DELAYR {
    #[doc = r" Value of the field as raw bits"]
    #[inline]
    pub fn bits(&self) -> u8 {
        self.bits
    }
}
#[doc = r" Value of the field"]
pub struct POST_DELAYR {
    bits: u8,
}
impl POST_DELAYR {
    #[doc = r" Value of the field as raw bits"]
    #[inline]
    pub fn bits(&self) -> u8 {
        self.bits
    }
}
#[doc = r" Value of the field"]
pub struct FRAME_DELAYR {
    bits: u8,
}
impl FRAME_DELAYR {
    #[doc = r" Value of the field as raw bits"]
    #[inline]
    pub fn bits(&self) -> u8 {
        self.bits
    }
}
#[doc = r" Value of the field"]
pub struct TRANSFER_DELAYR {
    bits: u8,
}
impl TRANSFER_DELAYR {
    #[doc = r" Value of the field as raw bits"]
    #[inline]
    pub fn bits(&self) -> u8 {
        self.bits
    }
}
#[doc = r" Proxy"]
pub struct _PRE_DELAYW<'a> {
    w: &'a mut W,
}
impl<'a> _PRE_DELAYW<'a> {
    #[doc = r" Writes raw bits to the field"]
    #[inline]
    pub unsafe fn bits(self, value: u8) -> &'a mut W {
        const MASK: u8 = 15;
        const OFFSET: u8 = 0;
        self.w.bits &= !((MASK as u32) << OFFSET);
        self.w.bits |= ((value & MASK) as u32) << OFFSET;
        self.w
    }
}
#[doc = r" Proxy"]
pub struct _POST_DELAYW<'a> {
    w: &'a mut W,
}
impl<'a> _POST_DELAYW<'a> {
    #[doc = r" Writes raw bits to the field"]
    #[inline]
    pub unsafe fn bits(self, value: u8) -> &'a mut W {
        const MASK: u8 = 15;
        const OFFSET: u8 = 4;
        self.w.bits &= !((MASK as u32) << OFFSET);
        self.w.bits |= ((value & MASK) as u32) << OFFSET;
        self.w
    }
}
#[doc = r" Proxy"]
pub struct _FRAME_DELAYW<'a> {
    w: &'a mut W,
}
impl<'a> _FRAME_DELAYW<'a> {
    #[doc = r" Writes raw bits to the field"]
    #[inline]
    pub unsafe fn bits(self, value: u8) -> &'a mut W {
        const MASK: u8 = 15;
        const OFFSET: u8 = 8;
        self.w.bits &= !((MASK as u32) << OFFSET);
        self.w.bits |= ((value & MASK) as u32) << OFFSET;
        self.w
    }
}
#[doc = r" Proxy"]
pub struct _TRANSFER_DELAYW<'a> {
    w: &'a mut W,
}
impl<'a> _TRANSFER_DELAYW<'a> {
    #[doc = r" Writes raw bits to the field"]
    #[inline]
    pub unsafe fn bits(self, value: u8) -> &'a mut W {
        const MASK: u8 = 15;
        const OFFSET: u8 = 12;
        self.w.bits &= !((MASK as u32) << OFFSET);
        self.w.bits |= ((value & MASK) as u32) << OFFSET;
        self.w
    }
}
impl R {
    #[doc = r" Value of the register as raw bits"]
    #[inline]
    pub fn bits(&self) -> u32 {
        self.bits
    }
    #[doc = "Bits 0:3 - Controls the amount of time between SSEL assertion and the beginning of a data transfer. There is always one SPI clock time between SSEL assertion and the first clock edge. This is not considered part of the pre-delay. 0x0 = No additional time is inserted. 0x1 = 1 SPI clock time is inserted. 0x2 = 2 SPI clock times are inserted. 0xF = 15 SPI clock times are inserted."]
    #[inline]
    pub fn pre_delay(&self) -> PRE_DELAYR {
        let bits = {
            const MASK: u8 = 15;
            const OFFSET: u8 = 0;
            ((self.bits >> OFFSET) & MASK as u32) as u8
        };
        PRE_DELAYR { bits }
    }
    #[doc = "Bits 4:7 - Controls the amount of time between the end of a data transfer and SSEL deassertion. 0x0 = No additional time is inserted. 0x1 = 1 SPI clock time is inserted. 0x2 = 2 SPI clock times are inserted. 0xF = 15 SPI clock times are inserted."]
    #[inline]
    pub fn post_delay(&self) -> POST_DELAYR {
        let bits = {
            const MASK: u8 = 15;
            const OFFSET: u8 = 4;
            ((self.bits >> OFFSET) & MASK as u32) as u8
        };
        POST_DELAYR { bits }
    }
    #[doc = "Bits 8:11 - If the EOF flag is set, controls the minimum amount of time between the current frame and the next frame (or SSEL deassertion if EOT). 0x0 = No additional time is inserted. 0x1 = 1 SPI clock time is inserted. 0x2 = 2 SPI clock times are inserted. 0xF = 15 SPI clock times are inserted."]
    #[inline]
    pub fn frame_delay(&self) -> FRAME_DELAYR {
        let bits = {
            const MASK: u8 = 15;
            const OFFSET: u8 = 8;
            ((self.bits >> OFFSET) & MASK as u32) as u8
        };
        FRAME_DELAYR { bits }
    }
    #[doc = "Bits 12:15 - Controls the minimum amount of time that the SSEL is deasserted between transfers. 0x0 = The minimum time that SSEL is deasserted is 1 SPI clock time. (Zero added time.) 0x1 = The minimum time that SSEL is deasserted is 2 SPI clock times. 0x2 = The minimum time that SSEL is deasserted is 3 SPI clock times. 0xF = The minimum time that SSEL is deasserted is 16 SPI clock times."]
    #[inline]
    pub fn transfer_delay(&self) -> TRANSFER_DELAYR {
        let bits = {
            const MASK: u8 = 15;
            const OFFSET: u8 = 12;
            ((self.bits >> OFFSET) & MASK as u32) as u8
        };
        TRANSFER_DELAYR { bits }
    }
}
impl W {
    #[doc = r" Reset value of the register"]
    #[inline]
    pub fn reset_value() -> W {
        W { bits: 0 }
    }
    #[doc = r" Writes raw bits to the register"]
    #[inline]
    pub unsafe fn bits(&mut self, bits: u32) -> &mut Self {
        self.bits = bits;
        self
    }
    #[doc = "Bits 0:3 - Controls the amount of time between SSEL assertion and the beginning of a data transfer. There is always one SPI clock time between SSEL assertion and the first clock edge. This is not considered part of the pre-delay. 0x0 = No additional time is inserted. 0x1 = 1 SPI clock time is inserted. 0x2 = 2 SPI clock times are inserted. 0xF = 15 SPI clock times are inserted."]
    #[inline]
    pub fn pre_delay(&mut self) -> _PRE_DELAYW {
        _PRE_DELAYW { w: self }
    }
    #[doc = "Bits 4:7 - Controls the amount of time between the end of a data transfer and SSEL deassertion. 0x0 = No additional time is inserted. 0x1 = 1 SPI clock time is inserted. 0x2 = 2 SPI clock times are inserted. 0xF = 15 SPI clock times are inserted."]
    #[inline]
    pub fn post_delay(&mut self) -> _POST_DELAYW {
        _POST_DELAYW { w: self }
    }
    #[doc = "Bits 8:11 - If the EOF flag is set, controls the minimum amount of time between the current frame and the next frame (or SSEL deassertion if EOT). 0x0 = No additional time is inserted. 0x1 = 1 SPI clock time is inserted. 0x2 = 2 SPI clock times are inserted. 0xF = 15 SPI clock times are inserted."]
    #[inline]
    pub fn frame_delay(&mut self) -> _FRAME_DELAYW {
        _FRAME_DELAYW { w: self }
    }
    #[doc = "Bits 12:15 - Controls the minimum amount of time that the SSEL is deasserted between transfers. 0x0 = The minimum time that SSEL is deasserted is 1 SPI clock time. (Zero added time.) 0x1 = The minimum time that SSEL is deasserted is 2 SPI clock times. 0x2 = The minimum time that SSEL is deasserted is 3 SPI clock times. 0xF = The minimum time that SSEL is deasserted is 16 SPI clock times."]
    #[inline]
    pub fn transfer_delay(&mut self) -> _TRANSFER_DELAYW {
        _TRANSFER_DELAYW { w: self }
    }
}